Пример 11. Отличается от 10-ого примера незначительными поправками. Просто заменяем квадрат на модуль: код «DUP *» на «ABS».

: B11 ( A B -> {|A|+|B|} {|A|-|B|} {|A|*|B|} {|A|/|B|} )
    SWAP ABS SWAP ABS        \ A B ->|A| |B|
    2DUP +                   \ |A| |B|-> |A| |B| (|A|+|B|)
    ROT ROT 2DUP –           \ |A| |B| (|A|+|B|) -> (|A|+|B|) |A| |B| (|A|-|B|)
    ROT ROT 2DUP *           \ (+) |A| |B| (-) -> (+) (-) |A| |B| (|A|*|B|)
    ROT ROT /                \ (+) (-) |A| |B| (*)-> (+) (-) (*) (|A|/|B|)
;

В случае для вещественных аргументов:

: B11 ( A B -> {|A|+|B|} {|A|-|B|} {|A|*|B|} {|A|/|B|} )
   FSWAP FABS                 \ A B -> B |A|
    FSWAP FABS                 \ B |A| -> |A| |B|
    FOVER FOVER F+             \ |A| |B|-> |A| |B| (|A|+|B|)
    FROT FROT FOVER FOVER F-   \ |A| |B| (|A|+|B|) -> (|A|+|B|) |A| |B| (|A|-|B|)
    FROT FROT FOVER FOVER F*   \ (+) |A| |B| (-) -> (+) (-) |A| |B| (|A|*|B|)
    FROT FROT F/               \ (+) (-) |A| |B| (*)-> (+) (-) (*) (|A|/|B|)
;

В комментариях (скобках) соответствующие сумма, разность, произведение и частное взяты в фигурные скобки для визуального выделения элементов на стеке. Обычные скобки в данном случае применять нельзя, так как они обозначают комментарий и являются зарезервированными словами Форта и системы программирования SP-Forth в частности.

Тест на корректность работы написанных слов произведите самостоятельно.

Пример 12. Вычислить гипотенузу и периметр прямоугольного треугольника по его катетам. Так как мы имеем дело с квадратным корнем, сразу приведем код для случая вещественного аргумента.

: B12 ( A B -> C P ) \ C=Квадратный_Корень(A^2+B^2) P=A+B+C
   FOVER FDUP F*      \ A B -> A B A^2
   FOVER FDUP F*      \ A B A^2 -> A B A^2 B^2
   F+ FSQRT           \ A B A^2 B^2 -> A B Квадратный_Корень(A^2+B^2)=C
   FROT FROT F+       \ A B C -> C A+B
   FOVER F+           \ C A+B -> C A+B+C=P
;

Проверим на прямоугольном треугольнике с катетами 3 и 5:

3E 4E B12 F. F.         \ вызываем нашу подпрограмму и печатаем результат
12.000000 5.0000000  Ok

3^2+4^2=25. Квадратный корень из 25=5. 5+3+4=12– что является истиной. В данном случае специально подобрана Пифагорова тройка, для простоты проверки. Проверим общий случай:

3E 5E B12 F. F.
13.830952 5.8309519  Ok

Можете самостоятельно проверить истинность теста.

Пример 13. Найти площади двух кругов (с общим центром) и кольца между ними. Даны радиусы R1 и R2, причем R1 > R2. Как и ранее сперва напишем слово для целочисленных чисел. Если не совсем понятно почему не написать сразу универсальный вариант для вещественных данных, то поясняю: отладка в этом случае наиболее проста для сложных слов и для начинающих программистов, так как все данные на стеке видны сразу после их ввода, то удается проверить и понять работу кода вводя команду за командой. Этого преимущества лишены операторы для работы с вещественными числами. После написания слова с целыми аргументами не сложно перевести его код для работы с вещественными и получить результат того же типа.

: B13 ( R1 R2 -> S1 S2 S3) \ S1=Pi*R1^2 S2= Pi*R2^2 S3=S1-S2
   SWAP DUP * 314 *         \ R1 R2 -> R2 (Pi*R1^2)=S1
   SWAP DUP * 314 *         \ R2 S1 -> S1 (Pi*R2^2)=S2
   2DUP -                   \ S1 S2 -> S1 S2 (S1-S2)=S3
;

Запустим наше слово на примере двух кругов с радиусами 25 и 15 соответственно.

25 15 B13
 Ok ( 196250 70650 125600 )

Выше приведен вариант кода с целочисленными аргументами, причем все 3 площади больше в 100 раз из-за того, что мы приняли Пи равным 314. Перепишем пример для случая вещественных аргументов.

: B13 ( R1 R2 -> S1 S2 S3)  \ S1=Pi*R1^2 S2= Pi*R2^2 S3=S1-S2
   FSWAP FDUP F* 314E-2 F*   \ R1 R2 -> R2 (Pi*R1^2)=S1
   FSWAP FDUP F* 314E-2 F*   \ R2 (Pi*R1^2)=S1 -> (Pi*R1^2)=S1 (Pi*R2^2)=S2
   FOVER FOVER F-            \ S1 S2 -> S1 S2 (S1-S2)=S3
;

Тестирование примера 13:

25E-1 15E-1 B13 F. F. F.
12.560000 7.0650000 19.625000  Ok

S1 = 19,625 = 3.14*2.5^2; S2 = 7,065 = 3.14*1.5^2; S3=S1-S2=12,56=19,625-7,065. Тестирование прошло успешно. Не забываем про обратный порядок печати со стека. Написанное слово работает правильно, соответственно стековой нотации. Если вам необходим другой порядок вывода, то можете самостоятельно скорректировать слово, добавив код после вызова «B13» и до вывода «F. F. F.».

Пример 14. Определить радиус окружности и площадь круга, через ее длину. Сразу составим программку для вещественного аргумента, ибо целочисленное огрубление будет давать неприемлемый по качеству результат для малых значений длины окружности.

: B14 ( L -> R S )        \ R=L/(2*Pi) S=Pi*R^2
   628e-2 F/                \ L -> R=L/6.28 где 6,28=2*Pi=D
   FDUP FDUP F* 314e-2 F*   \ R -> R Pi*R^2
;

Посчитаем R и S для L=25,37

2537E-2 B14 F. F.
51.244976 4.0398089  Ok

R=25.37/6.28= 4,0398 и S=3,14* 4,0398^2= 51,244. Тест прошел успешно.

Пример 15. Зная площадь круга, вычислить его диаметр и длину.

: B15 ( S -> D L ) \ D=Квадратный_Корень(4*S/Pi) L=Pi*D
   4E F*            \ S -> 4*S
   314E-2 F/        \ 4*S -> 4*S/Pi
   FSQRT            \ 4*S/Pi -> Квадратный_Корень(4*S/Pi)=D
   FDUP 314E-2 F*   \ D -> D D*Pi=L
;

Посчитаем диаметр и длину круга площадью равной 12,345.

12345E-3 B15 F. F.
12.452036 3.9656166  Ok

Квадратный корень из (12,345*4/3.14) равно 3,965616, а 3,965616*3,14=12,4520, то ест ь ИСТИНА. Пример довольно простой и нет других причин писать код для целочисленного варианта аргументов. В случае необходимости несложно самостоятельно решить эту задачу.

Пример 16. Вычислим расстояние между двумя точками на числовой оси, зная координаты.

: B16 ( X1 X2 -> |X1-X2| )
   - ABS      \ X1 X2 -> |X1-X2|
;

Для вещественных аргументов.

: B16 ( X1 X2 -> |X1-X2| )
   F- FABS      \ X1 X2 -> |X1-X2|
;
31E-1 -12E1 B16 F.
123.10000  Ok   \ |3.1-(-120)|=123.1

Пример 17. По трем координатам на числовой оси (X1, X2, X3) вычислить следующие расстояния: |x1-x3|, |x2-x3| и их сумму. Сперва для целых чисел.

: B17 ( X1 X2 X3 -> |x1-x3| |x2-x3| {|x1-x3|+|x2-x3|} )
   SWAP OVER            \ X1 X2 X3 -> X1 X3 X2 X3
   - ABS                \ X1 X3 X2 X3 -> X1 X3 |X2-X3|
   ROT ROT – ABS SWAP   \ X1 X3 |X2-X3| -> | X1-X3| |X2-X3|
   2DUP +               \ | X1-X3| |X2-X3|-> | X1-X3| |X2-X3|  (| X1-X3|+|X2-X3|)
;

Для вещественных.

: B17 ( X1 X2 X3 -> |x1-x3| |x2-x3| {|x1-x3|+|x2-x3|} )
   FSWAP FOVER               \ X1 X2 X3 -> X1 X3 X2 X3
   F- FABS                   \ X1 X3 X2 X3 -> X1 X3 |X2-X3|
   FROT FROT F– FABS FSWAP   \ X1 X3 |X2-X3| -> | X1-X3| |X2-X3|
   FOVER FOVER F+            \ | X1-X3| |X2-X3|-> | X1-X3| |X2-X3|  (| X1-X3|+|X2-X3|)
;

Тест на координатах

-1E1 1E-1 3E2 B17 F. F. F.
609.90000 299.90000 310.00000  Ok

|X1-X3|=|-10-300|=310; |X2-X3|=|0.1-300|=299.9; (|X1-X3|+|X2-X3|)=310+299.9=609.9.

Пример 18. Схож с предыдущей задачей. Сумма заменяется произведением.

: B18 ( X1 X2 X3 -> {|x1-x3|*|x2-x3|} )
   SWAP OVER         \ X1 X2 X3 -> X1 X3 X2 X3
   - ABS             \ X1 X3 X2 X3 -> X1 X3 |X2-X3|
   ROT ROT – ABS *   \ X1 X3 |X2-X3| -> {|x1-x3|*|x2-x3|}
;
-5 2 7 B18
 Ok ( 60 )

|-5-7|*|2-7|= 12*5=60

Для вещественных чисел.

: B18 ( X1 X2 X3 -> {|x1-x3|*|x2-x3|} )
   FSWAP FOVER           \ X1 X2 X3 -> X1 X3 X2 X3
   F- FABS               \ X1 X3 X2 X3 -> X1 X3 |X2-X3|
   FROT FROT F– FABS F*  \ X1 X3 |X2-X3| -> {|x1-x3|*|x2-x3|}
;
-1E1 2E-1 23E1 B18 F.
55152.000  Ok

|-10-230|*|0.2-230|=240*229.8=55152

Пример 19. По координатам противоположенных вершин прямоугольника вычислить его периметр и площадь, стороны параллельны координатным осям.

: B19 ( X1 Y1 X2 Y2 -> P S )   \ P=2*[A+B] S=A*B
   ROT - ABS                   \ X1 Y1 X2 Y2 -> X1 X2 |Y2-Y1|
   SWAP ROT – ABS              \ X1 X2 |Y2-Y1| -> |Y2-Y1|=A |X2-X1|=B
   2DUP + 2*                   \ A B -> A B 2*(A+B)=P
   ROT ROT *                   \ A B P -> P A*B=S
;
1 3 7 8 B19 . .
30 22  Ok

A=|1-7|=6 B=|3-8|=5. P=2*(A+B)=2*(6+5)=22. S=A*B=6*5=30.

Вариант с вещественными аргументами не сильно отличается от целочисленного.

: B19 ( X1 Y1 X2 Y2 -> P S ) \ P=2*[A+B] S=A*B
   FROT F- FABS              \ X1 Y1 X2 Y2 -> X1 X2 |Y2-Y1|
   FSWAP FROT F– FABS        \ X1 X2 |Y2-Y1| -> |Y2-Y1|=A |X2-X1|=B
   FOVER FOVER F+ 2E F*      \ A B -> A B 2*(A+B)=P
   FROT FROT F*              \ A B P -> P A*B=S
;
11E-1 15E-1 73E-1 62E-1 B19 F. F.
29.140000 21.800000  Ok

A=|1.5-6.2|=4.7; B=|1.1-7.3|=6.2; P=2*(4.7+6.2)= 21,8; S=A*B=4.7*6.2= 29,14.

Пример 20. Вычислить расстояние между двумя точками на плоскости по их координатам. Так как придется извлекать квадратный корень, то вариант с целочисленными координатами пропускаем.

: B20 ( X1 Y1 X2 Y2-> R )    \ R= Квадратный_Корень((X2-X1)^2+(Y2-Y1)^2)
   FROT F- FDUP F*            \ X1 Y1 X2 Y2-> X1 X2 (Y2-Y1)^2
   FSWAP FROT F- FDUP F*      \ X1 X2 (Y2-Y1)^2 -> (Y2-Y1)^2 (X2-X1)^2
   F+ FSQRT                   \ (Y2-Y1)^2 (X2-X1)^2 -> R
;
11E-1 15E-1 73E-1 62E-1 B20 F.
7.7801028  Ok

A=|1.5-6.2|=4.7; B=|1.1-7.3|=6.2; R= Квадратный_Корень(A^2+B^2)= Квадратный_Корень(22.09+ 38,44)= 7,7801.